
shiv

May 02, 2018

Contents

1 How it works 3
1.1 Building . 3
1.2 Bootstrapping . 4

2 Influencing Runtime 5
2.1 SHIV_ROOT . 5
2.2 SHIV_INTERPRETER . 5
2.3 SHIV_ENTRY_POINT . 5
2.4 SHIV_FORCE_EXTRACT . 5

3 Table of Contents 7
3.1 Motivation & Comparisons . 7
3.2 Shiv API . 8

4 Indices and tables 11

Python Module Index 13

i

ii

shiv

Shiv is a command line utility for building fully self contained Python zipapps as outlined in PEP 441 but with all their
dependencies included!

Shiv’s primary goal is making distributing Python applications fast & easy.

Contents 1

http://legacy.python.org/dev/peps/pep-0441/

shiv

2 Contents

CHAPTER 1

How it works

Shiv includes two major components: a builder and a bootstrap module.

1.1 Building

In order to build self-contained single-artifact executables, shiv leverages pip and stdlib’s zipapp module.

Note: Unlike “conventional” zipapps, shiv packs a site-packages style directory of your tool’s dependencies into
the resulting binary, and then at bootstrap time extracts it into a ~/.shiv cache directory. More on this in the
Bootstrapping section.

shiv accepts only a few command line parameters of it’s own, and any unprocessed parameters are delegated to pip
install.

For example, if you wanted to create an executable for Pipenv, you’d specify the required dependencies (pipenv and
pew), the callable (either -e for a setuptools-style entry point or -c for a bare console_script name), and the output
file.

$ shiv -c pipenv -o ~/bin/pipenv pipenv pew

This creates an executable (~/bin/pipenv) containing all the dependencies required by pipenv and pew that
invokes the console_script pipenv when executed!

You can optionally omit the entry point specification, which will drop you into an interpreter that is bootstrapped with
the dependencies you specify.

$ shiv requests -o requests.pyz --quiet
$./requests.pyz
Python 3.6.1 (default, Apr 19 2017, 15:02:08)
[GCC 4.2.1 Compatible Apple LLVM 7.3.0 (clang-703.0.29)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)

(continues on next page)

3

shiv

(continued from previous page)

>>> import requests
>>> requests.get('http://shiv.readthedocs.io/')
<Response [200]>

This is particularly useful for running scripts without needing to contaminate your Python environment, since the pyz
files can be used as a shebang!

1.2 Bootstrapping

When you run an executable created with shiv a special bootstrap function is called. This function unpacks depen-
dencies into a uniquely named subdirectory of ~/.shiv and then runs your entry point (or interactive interpreter)
with those dependencies added to your sys.path. Once the dependencies have been extracted to disk, any further
invocations will re-use the ‘cached’ site-packages unless they are deleted or moved.

Note: Dependencies are extracted (rather than loaded into memory from the zipapp itself) because of limitations of
binary dependencies. Shared objects loaded via the dlopen syscall require a regular filesystem. Many libraries also
expect a filesystem in order to do things like building paths via __file__, etc.

4 Chapter 1. How it works

CHAPTER 2

Influencing Runtime

There are a number of environment variables you can specify to influence a pyz file created with shiv.

2.1 SHIV_ROOT

This should be populated with a full path, it effectively overrides ~/.shiv as the default base dir for shiv’s extraction
cache.

2.2 SHIV_INTERPRETER

This is a boolean that bypasses and console_script or entry point baked into your pyz. Useful for dropping into an
interactive session in the environment of a built cli utility.

2.3 SHIV_ENTRY_POINT

This should be populated with a setuptools-style callable, e.g. “module.main:main”. This will execute the pyz with
whatever callable entry point you supply. Useful for sharing a single pyz across many callable ‘scripts’.

2.4 SHIV_FORCE_EXTRACT

This forces re-extraction of dependencies even if they’ve already been extracted. If you make hotfixes/modifications
to the ‘cached’ dependencies, this will overwrite them.

5

shiv

6 Chapter 2. Influencing Runtime

CHAPTER 3

Table of Contents

3.1 Motivation & Comparisons

3.1.1 Why?

At LinkedIn we ship hundreds of command line utilities to every machine in our data-centers and all of our employees
workstations. The vast majority of these utilties are written in Python. In addition to these utilities we also have many
internal libraries that are uprev’d daily.

Because of differences in iteration rate and the inherent problems present when dealing with such a huge dependency
graph, we need to package the executables discretely. Initially we took advantage of the great open source tool PEX.
PEX elegantly solved the isolated packaging requirement we had by including all of a tool’s dependencies inside of a
single binary file that we could then distribute!

However, as our tools matured and picked up additional dependencies, we became acutely aware of the performance
issues being imposed on us by pkg_resources’s Issue 510. Since PEX leans heavily on pkg_resources to
bootstrap it’s environment, we found ourselves at an impass: lose out on the ability to neatly package our tools in favor
of invocation speed, or impose a few second performance penalty for the benefit of easy packaging.

After spending some time investigating extricating pkg_resources from PEX, we decided to start from a clean slate
and thus shiv was created.

3.1.2 How?

Shiv exploits the same features of Python as PEX, packing __main__.py into a zipfile with a shebang prepended
(akin to zipapps, as defined by PEP 441, extracting a dependency directory and injecting said dependencies at runtime.
We have to credit the great work by @wickman, @kwlzn, @jsirois and the other PEX contributors for laying the
groundwork!

The primary differences between PEX and shiv are:

• shiv completey avoids the use of pkg_resources. If it is included by a transitive dependency, the per-
formance implications are mitigated by limiting the length of sys.path and always including the -s and -E
Python interpreter flags.

7

https://github.com/pantsbuild/pex
https://github.com/pypa/setuptools/issues/510
https://www.python.org/dev/peps/pep-0441/
https://docs.python.org/3/using/cmdline.html#cmdoption-s
https://docs.python.org/3/using/cmdline.html#cmdoption-e

shiv

• Instead of shipping our binary with downloaded wheels inside, we package an entire site-packages directory,
as installed by pip. We then bootstrap that directory post-extraction via the stdlib’s site.addsitedir
function. That way, everything works out of the box: namespace packages, real filesystem access, etc.

Because we optimize for a shorter sys.path and don’t include pkg_resources in the critical path, executales
created with shiv can outperform ones created with PEX by almost 2x. In most cases the executables created with
shiv are even faster than running a script from within a virtualenv!

3.2 Shiv API

3.2.1 cli

shiv.cli.copy_bootstrap(bootstrap_target: pathlib.Path)→ None
Copy bootstrap code from shiv into the pyz.

Parameters bootstrap_target – The temporary directory where we are staging pyz contents.

shiv.cli.find_entry_point(site_packages: pathlib.Path, console_script: str)→ str
Find a console_script in a site-packages directory.

Console script metadata is stored in entry_points.txt per setuptools convention. This function searches all en-
try_points.txt files and returns the import string for a given console_script argument.

Parameters

• site_packages – A path to a site-packages directory on disk.

• console_script – A console_script string.

shiv.cli.validate_interpreter(interpreter_path: Union[str, NoneType] = None)→ pathlib.Path
Ensure that the interpreter is a real path, not a symlink.

If no interpreter is given, default to sys.exectuable

Parameters interpreter_path – A path to a Python interpreter.

constants —

This module contains various error messages.

3.2.2 builder

This module is a slightly modified implementation of Python’s “zipapp” module.

We’ve copied a lot of zipapp’s code here in order to backport support for compression. https://docs.python.org/3.7/
library/zipapp.html#cmdoption-zipapp-c

shiv.builder.create_archive(source: pathlib.Path, target: pathlib.Path, interpreter: pathlib.Path,
main: str, compressed: bool = True)→ None

Create an application archive from SOURCE.

A slightly modified version of stdlib’s zipapp.create_archive

shiv.builder.write_file_prefix(f: IO[Any], interpreter_path: pathlib.Path)→ None
Write a shebang line.

Note: Shiv explicitly uses -sE as start up flags to prevent contamination of sys.path.

8 Chapter 3. Table of Contents

https://docs.python.org/3.7/library/zipapp.html#cmdoption-zipapp-c
https://docs.python.org/3.7/library/zipapp.html#cmdoption-zipapp-c
https://docs.python.org/3/library/zipapp.html#zipapp.create_archive

shiv

Parameters

• f – An open file handle.

• interpreter_path – A path to a python interpreter.

3.2.3 pip

shiv.pip.clean_pip_env()→ Generator[[NoneType, NoneType], NoneType]
A context manager for temporarily removing ‘PIP_REQUIRE_VIRTUALENV’ from the environment.

Since shiv installs via –target, we need to ignore venv requirements if they exist.

shiv.pip.install(interpreter_path: str, args: List[str])→ None
pip install as a function.

Accepts a list of pip arguments.

>>> install('/usr/local/bin/python3', ['numpy', '--target', 'site-packages'])
Collecting numpy
Downloading numpy-1.13.3-cp35-cp35m-manylinux1_x86_64.whl (16.9MB)

100% || 16.9MB 53kB/s
Installing collected packages: numpy
Successfully installed numpy-1.13.3

3.2.4 bootstrap

shiv.bootstrap.bootstrap()
Actually bootstrap our shiv environment.

shiv.bootstrap.cache_path(archive, root_dir, build_id)
Returns a ~/.shiv cache directory for unzipping site-packages during bootstrap.

Parameters

• archive (ZipFile) – The zipfile object we are bootstrapping from.

• buidl_id (str) – The build id generated at zip creation.

shiv.bootstrap.extract_site_packages(archive, target_path)
Extract everything in site-packages to a specified path.

Parameters

• archive (ZipFile) – The zipfile object we are bootstrapping from.

• target_path (Path) – The path to extract our zip to.

shiv.bootstrap.import_string(import_name)
Returns a callable for a given setuptools style import string

Parameters import_name – A console_scripts style import string

3.2.5 bootstrap.utils

shiv.bootstrap.utils.current_zipfile()
A function to vend the current zipfile, if any

3.2. Shiv API 9

shiv

3.2.6 bootstrap.environment

This module contains the Environment object, which combines settings decided at build time with overrides defined
at runtime (via environment variables).

3.2.7 bootstrap.interpreter

The code in this module is adapted from https://github.com/pantsbuild/pex/blob/master/pex/pex.py

It is used to enter an interactive interpreter session from an executable created with shiv.

10 Chapter 3. Table of Contents

https://github.com/pantsbuild/pex/blob/master/pex/pex.py

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

shiv

12 Chapter 4. Indices and tables

Python Module Index

s
shiv, 8
shiv.bootstrap, 9
shiv.bootstrap.environment, 10
shiv.bootstrap.interpreter, 10
shiv.bootstrap.utils, 9
shiv.builder, 8
shiv.cli, 8
shiv.constants, 8
shiv.pip, 9

13

shiv

14 Python Module Index

Index

B
bootstrap() (in module shiv.bootstrap), 9

C
cache_path() (in module shiv.bootstrap), 9
clean_pip_env() (in module shiv.pip), 9
copy_bootstrap() (in module shiv.cli), 8
create_archive() (in module shiv.builder), 8
current_zipfile() (in module shiv.bootstrap.utils), 9

E
extract_site_packages() (in module shiv.bootstrap), 9

F
find_entry_point() (in module shiv.cli), 8

I
import_string() (in module shiv.bootstrap), 9
install() (in module shiv.pip), 9

S
shiv (module), 8
shiv.bootstrap (module), 9
shiv.bootstrap.environment (module), 10
shiv.bootstrap.interpreter (module), 10
shiv.bootstrap.utils (module), 9
shiv.builder (module), 8
shiv.cli (module), 8
shiv.constants (module), 8
shiv.pip (module), 9

V
validate_interpreter() (in module shiv.cli), 8

W
write_file_prefix() (in module shiv.builder), 8

15

	How it works
	Building
	Bootstrapping

	Influencing Runtime
	SHIV_ROOT
	SHIV_INTERPRETER
	SHIV_ENTRY_POINT
	SHIV_FORCE_EXTRACT

	Table of Contents
	Motivation & Comparisons
	Shiv API

	Indices and tables
	Python Module Index

